首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   23篇
  国内免费   6篇
测绘学   19篇
大气科学   40篇
地球物理   135篇
地质学   199篇
海洋学   50篇
天文学   71篇
综合类   6篇
自然地理   40篇
  2022年   8篇
  2021年   7篇
  2020年   11篇
  2018年   18篇
  2017年   8篇
  2016年   16篇
  2015年   15篇
  2014年   22篇
  2013年   30篇
  2012年   10篇
  2011年   28篇
  2010年   22篇
  2009年   27篇
  2008年   26篇
  2007年   24篇
  2006年   27篇
  2005年   11篇
  2004年   14篇
  2003年   23篇
  2002年   19篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   3篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1970年   6篇
  1966年   4篇
  1954年   3篇
排序方式: 共有560条查询结果,搜索用时 31 毫秒
101.
In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/24Mg ratio has a range of 2‰ and the 44Ca/42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (−1.31‰) and (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated values in rivers and rock reported so far demonstrating that both riverine and bedrock values may show greater variability than previously thought.Although rivers draining TSS limestone have the lowest values at −1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is −1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/24Mg ratios between silicate rock and solute Mg reflects the 26Mg/24Mg isotopic fractionation factor () between silicate and dissolved Mg during incongruent silicate weathering. The value of of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca is overwhelmingly derived from carbonate weathering. The average value in HHCS rivers is within uncertainty of silicate rock at 0.39‰. The widespread hot springs of the High Himalaya have an average δ26Mg value of −0.46‰ and an average value of 0.5‰, distinct from riverine values for δ26Mg but similar to riverine values. Although rivers draining each major rock type have and δ26Mg values in part inherited from bedrock, there is no correlation with proxies for carbonate or silicate lithology such as Na/Ca ratios, suggesting that Ca and Mg are in part recycled. However, in spite of the vast contrast in vegetation density between the arid Tibetan Plateau and the tropical Lesser Himalaya, the isotopic fractionation factor for Ca and Mg between solute and rocks are not systematically different suggesting that vegetation may only recycle a small amount of Ca and Mg in these catchments.The discrepancy between solute and solid Ca and Mg isotope ratios in these rivers from diverse weathering environments highlight our lack of understanding concerning the origin and subsequent path of Ca and Mg, bound as minerals in rock, and released as cations in rivers. The fractionation of Ca and Mg isotope ratios may prove useful for tracing mechanisms of chemical alteration. Ca isotope ratios of solute riverine Ca show a greater variability than previously acknowledged. The variability of Ca isotope ratios in modern rivers will need to be better quantified and accounted for in future models of global Ca cycling, if past variations in oceanic Ca isotope ratios are to be of use in constraining the past carbon cycle.  相似文献   
102.
 The morphological evolution, hydrodynamics and sediment dynamics of the lower Ebro are studied from historical and current data in order to determine the main changes that have governed the evolution of the Ebro channel near the river mouth during the last few centuries. The evolution of the mouth of this river during the last 2000-years, from an estuary to a delta, is interpreted as a process that has been accelerated by human land management. However, an inverse trend has been observed during recent decades: (1) the river mouth has been affected by erosion due to a drastic decrease in the river sediment discharge, and (2) the lower Ebro tends to evolve towards a quasi-permanent salt-wedge estuary as a consequence of the decrease in the river water discharge. Freshwater and sediment discharge decreases are mainly related to intense river water management during this century. The salt wedge favours erosion in the river banks, widening the river channel and causing an aggradational trend in the lower Ebro. Accretion-erosion rates and the sediment budget in the river mouth are estimated for different conditions. Received: 13 November 1995 · Accepted: 17 June 1996  相似文献   
103.
Generating one realization of a random permeability field that is consistent with observed pressure data and a known variogram model is not a difficult problem. If, however, one wants to investigate the uncertainty of reservior behavior, one must generate a large number of realizations and ensure that the distribution of realizations properly reflects the uncertainty in reservoir properties. The most widely used method for conditioning permeability fields to production data has been the method of simulated annealing, in which practitioners attempt to minimize the difference between the ’ ’true and simulated production data, and “true” and simulated variograms. Unfortunately, the meaning of the resulting realization is not clear and the method can be extremely slow. In this paper, we present an alternative approach to generating realizations that are conditional to pressure data, focusing on the distribution of realizations and on the efficiency of the method. Under certain conditions that can be verified easily, the Markov chain Monte Carlo method is known to produce states whose frequencies of appearance correspond to a given probability distribution, so we use this method to generate the realizations. To make the method more efficient, we perturb the states in such a way that the variogram is satisfied automatically and the pressure data are approximately matched at every step. These perturbations make use of sensitivity coefficients calculated from the reservoir simulator.  相似文献   
104.
Variation in seedling/sapling densities and stand diameter forms for six coniferous tree species is related to stand structural development and to elevation and topography in Lassen Volcanic National Park, California. Understory density patterns reflect differences in species tolerance; densities decrease with stand development for shade intolerant pines, but increase for shade tolerant firs and mountain hemlock. Pine species exhibit reverse-J diamter structures on recently disturbed sites, and decreaser and random forms elsewhere. More tolerant fir species show topographically mediated patterns of diameter structure, with reverse-J form common on northerly exposures and upland sites, but with decreaser and random forms on more xeric slopes. Interaction among species tolerance, environmental setting, and disturbance history yields a complex mosaic of stand diameter structures in the Lassen landscape.  相似文献   
105.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   
106.
The Valencia Fan developed as the distal fill of a deep-sea valley, detached from the continental slope and the main sedimentary source. A survey of side-scan sonar, Sea Beam and reflection seismics shows that the sediment is largely fed through the Valencia Valley. The upper fan comprises large channels with low-relief levees, and the middle fan has sinuous distributary channels. Depositional bedforms predominate on the valley floor and levees, and erosional bedforms are common in the valley walls. A change to slope on the fan apex and the presence of volcanoes on the upper fan are the main factors influencing fan-growth pattern.  相似文献   
107.
Recent deep-towed, high resolution sidescan sonar records and seismic profiles have been collected on the lower Valencia Fan (Northwestern Mediterranean). Three morphological zones, channelled, transition and unchannelled, have been recognized in the Valencia Channel mouth. Sonographs from the transition zone show a progresive transversal gradation from depositional to erosional bedforms. This asymmetry may be due to the lateral inputs of sediment flows from the rhone deep-sea fan and to the effect of the Coriolis force, which could have diverted the flows to the southwest. Bedforms recorded in the study area include trains of starved ripples and dunes, sand ribbons, and fields of elongated scours. Most morphological features, bedforms and seismic characteristics of the Valencia Channel mouth are typical of channel-lobe transition zones.  相似文献   
108.
109.
One hundred and fifty specimens of the elasipod holothurian Penilpidia ludwigi (von Marenzeller, 1893) were collected in sediment traps moored near the seabed in the La Fonera Canyon (Catalan Sea, north-western Mediterranean) and on the adjacent continental slope. These provide the third record of this apparently endemic Mediterranean species and the first record from the western Mediterranean. This was the only holothurian species trapped and the most abundant macroscopic organism found in the traps between 1200 and 1700 m depth over the whole sampling period (March–November 2001). It was particularly abundant in spring during the main flux of organic particles in the canyon. This coupling suggests that Penilpidia may aggregate at the seafloor during these events, making food availability a plausible explanation of the seasonal occurrence. Lateral transport of material re-suspended locally or up-canyon by near bottom currents appear to be the mechanism behind this uncommon occurrence, although in situ observations have recently been made on the swimming capability of this holothurian. The occurrence of benthic organisms in sediment traps set close to the seabed can provide information on bathyal benthic and benthopelagic populations.  相似文献   
110.
In the coastal waters off northern California, seasonal wind-driven upwelling supplies abundant nutrients to be processed by phytoplankton productivity. As part of the Coastal Ocean Processes: Wind Events and Shelf Transport (CoOP WEST) study, nutrients, CO2, size-fractionated chlorophyll, and phytoplankton community structure were measured in the upwelling region off Bodega Bay, CA, during May–June 2000, 2001 and 2002. The ability of this ecosystem to assimilate nitrate (NO3) and silicic acid/silicate (Si(OH)4) and accumulate particulate material (i.e. phytoplankton) was realized in all 3 years, following short events of upwelling-favorable winds, followed by periods of relaxed winds. This was observed as phytoplankton blooms, dominated by chlorophyll in cells greater than 5 μm in diameter, that reduced the ambient nutrients to zero. These communities were located over the near-shore shelf (<100 m depth) and were dominated by diatoms. An optimal window of 3–7 days of relaxed winds, following an upwelling pulse, was required for chlorophyll accumulation. The large-celled phytoplankton that result are likely important players in coastal new production and carbon cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号